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Introduction

Figure 1: Social network example.

Many realistic systems are only accurately modeled by a network of nodes and edges. Examples are
found in the study of

• Social networks (Facebook).
1 Individuals are nodes and associations are edges.
2 Given the network structure, how quickly does information flow through a population? (six-degrees of separation)
3 Are there correlations between characteristics of individuals in realistic social networks?

• Epidemiology of contagious diseases and computer viruses.
1 Individuals could be nodes in these model systems, but nodes could also be cities, major airports, or even abstract
population states.

2 The network may be fixed or dynamic. How does the network structure and dynamics affect the rate of contagion
spreading?

3 Is an outbreak even sustainable given the underlying network and node parameters?

In order to fully understand these physical processes, knowledge of the characteristics of the
network’s global structure is often necessary. These characteristics can typically be summarized
through various global network statistics such as the degree distribution, p(k), degree correlation
measures, the clustering coefficient, etc.

Sampling via Random Walks (RW)

Each sample is taken after each step of the walk, and the probability to transition from a current
node i to a neighboring node j is given through the edge weight wji,

P (i→ j) = wji∑
j′wj′i

, where wi =
∑
j

wji (1)
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Figure 2: Infinite network with symmetric rates between nodes.

In general for networks with unbiased edge weights qx = px〈w〉x/〈w〉 is an exact equality where px is the fraction of nodes with property x, 〈w〉x is the average outward rate
of nodes with property x, and 〈w〉 is the average outward rate over all nodes. The maximum likelihood value and standard error for the fraction px are then given by

p̂x =
∑
wKx,w/w∑
w′Kw′/w′

and σpx = p̂x√
Kx
. (4)

The presence of 1/w in this expression naturally accounts for the bias introduced in RW sampling due to the increased returns to hubs or nudes with a large connectivity.

Outward Rate Estimator

When x represents the outward rate of a node wi, Eq. (4) yields
the distribution estimator

p̂w = Kw/w∑
w′Kw′/w′

, (5)

which leads to an estimator for the average outward rate with
standard error of

〈ŵ〉 = `∑
wKw/w

and σ〈w〉 = 〈ŵ〉√
`

(6)

Estimating the Network Size

Before the sampling, label Np nodes as pseudotargets and compute their average outward rate
〈w〉p. Exploiting the direct dependence of the rate to find these targets on the network size, qp =
Np〈w〉p/N〈w〉, and estimator for the network size can be found to be

N̂ = `〈w〉pNp

Kp〈w〉
with σN = N̂√

Kp
. (7)

As hubs are easy to find and designate as pseudotargets, the rate at which data points are collected
can be controlled through both increasing Np and 〈w〉p such that the error in the estimator rapidly
vanishes.

Tag and Recapture

In the case of a complete network, 〈w〉 = 〈w〉p = N − 1, RW sampling is identical to uniform sampling of a population of size N . Provided that N � 1, the pseudotarget
drawing followed by the RW sampling processes result in two sets, A and B, virtually consisting of only unique elements of respective sizes NA = Np and NB = `. Further
recognizing that NAB = Kp is the number of intersecting elements in these sets, Eq. (7) recovers the classic formula for estimating the size of a population given two
independent samplings, N̂ = NANB/NAB [1]. Our formalism additionally predicts a standard error for this classic result, σN = NANB/N

3/2
AB, as well as the full posterior

distribution for the population size.

Tracking Traffic Driven Epidemics

Hidden Metric

For the following epidemics example, the network structure has been generated using a hidden
metric consisting of a 1-dimensional circle [2]. This method of generation results in a network
with not only the scale-free and small-world properties, but additionally develops local cluster
structures. Generation procedure:

• Assign each node a uniformly drawn location on this hidden metric, θ ∈ [0, 2π),
• and an expected degree, κ, drawn from a power-law distribution,

p(κ) ∼ κ−γ.

• Each pair of nodes are then linked with a probability based on these two parameters,
p ∼ (1 + d(θ, θ′)/ηκκ′)−α,

where η ≡ (α− 1)/2〈k〉, d(θ, θ′) is the geodesic distance between the two nodes on the hidden
metric, and α is a tunable parameter. For our network construction we set N = 105, γ = 2.6,
and α = 2. Even with the local structures present in this network, the RT distribution is very
well approximated by the exponential ansatz for our set of Np = 1000 pseudotargets. Figure 3: Hidden metric space.

Figure 4: Fraction of infected nodes.

Contagion Packet Dynamics

On a network generated using a hidden metric, an epidemic is simulated through
the exchange of contagion packets between nodes:

• Packets move from node i to node j on the network,
• j becomes infected with probability β if i is infected in this time step.
• Each infected node recovers with a rate µ = 1

We have examined the case in which these packets are performing RWs from
randomly assigned initial and destination nodes with 2N packets traversing the
network at any given time. The packets traverse a link with rate 1 such that
on average 2N packets have moved once per simulation time unit. Under this
choice of packet dynamics there is a critical value for β, below which there can
be no sustained epidemic outbreak, and that this critical value is based on the
network connectivity through βc ∼ 〈k〉2/〈k2〉. In our reconstruction of this
simulation, we have chosen β = .7 � βc, and set and maintained the initial
fraction of infected nodes to 1/N in order to guarantee an eventual outbreak.[3]

At regular intervals, RW sampling was performed for ` = 104 steps during which
the following statistics were tracked:

• The number of packets currently occupying a node in the network, ωi, expected
to be ∼ (2N)ki/N〈k〉 in steady-state.

• The total fraction of infected nodes in the network, ρ(t).
• Several other statistics relevant to epidemiology:

1 The network size, N .
2 The average node degree, 〈k〉.
3 The average degree of neighboring nodes, 〈〈knn〉〉.
4 The network clustering coefficient, 〈C〉.

The results of estimating these statistics from a single walk are shown in the table
below. The estimation of ρ(t) at the end of each of the intervals alongside the true
simulation values are shown in Fig. 4. Note that during the interval t = 4...8 when
the epidemic spread is the most rapid, the estimation is below the true value as
the statistic is based on a range of values of ρ(t).

Figure 5: Distribution of MLE’s for βc for three walk lengths

N̂ N 〈k̂〉 〈k〉 〈〈knn〉
∧

〉 〈〈knn〉〉 〈Ĉ〉 〈C〉 〈ω̂〉 〈ω〉
±2σN ±2σ〈k〉 ±2σ〈〈knn〉〉 ±2σ〈C〉 ±2σ〈ω〉

1.01× 105 105 8.02 8.14 64.6 67.1 0.251 0.255 2.00 2.00
± 0.08× 105 ±0.16 ±4.2 ±0.011 ±0.045

104 independent RWs were run each for ` = 102, 103, and 104 steps, and the
quantity β̂c ≡ 〈k̂〉2/(〈k̂2〉〈ω̂〉) was computed for each to obtain the distribution of
MLE values using this methodology. The histograms of the resulting values are
shown in Fig. 5 for all three walk lengths, the longest of which allows for a
maximum of 10% of the network to be sampled from. As a constrast, three
uniform samplings were also performed with n = ` samples to match all three
walks, and βc was estimated using this method.

Generalized Erdős-Rényi

GER Network Construction

We have constructed a generalized ER network with N = 106 nodes and weighted edges. After
placing all the edges as in an unweighted ER network, a loop was added to each node with
probability p = 1/2. All loops and edges were then assigned a symmetric weight wij = wji drawn
from an exponential distribution with unit mean.

The RT distribution for this system deviates from purely exponential since many returns occur
after a single step due to loops (Fig. 6). Nonetheless, all the network statistics we have considered
are predicted accurately excepting the tail of the distribution since those rare events were not
observed. Thus our methodology is equally applicable to studies of weighted networks with loops.

Figure 6: RT distribution for generalized ER network.
Wikipedia

Wikipedia as an Undirected Network

Finally, we have examined the network formed by hyperlinks between English articles on Wikipedia. Links connecting an article to itself were disregarded, multiple links
between articles were counted as one, and automatic redirects were disallowed, resulting in an unweighted, undirected, loopless network consisting of all English articles,
redirect pages, and disambiguation pages.

Figure 7: Wikipedia network results.

To assign pseudotargets, the first 5000 pages were drawn from
Wikipedia’s static HTML dumps. A single randomly chosen link was
then taken from each of these pages and the node it pointed to was
designated as a pseudotarget, resulting inNp = 4769. This procedure
increases the likelihood that the pseudotargets are hubs with a large
number of links, facilitating collection of the network statistics since
Kp grows more rapidly. We have focused on several statistics that
facilitate comparison with known properties of Wikipedia: the size of
each page in bytes, ν, and two variables χr, χd ∈ {0, 1} representing
whether a page is a redirect or a disambiguation page, respectively.
The quantities 〈χr〉, 〈χd〉, 〈χrχd〉, and 〈νa〉 ≡ 〈(1− χr)ν〉 then give
the fraction of redirect pages, disambiguation pages, both redirect
and disambiguation pages, and the average storage space in bytes
of English articles (Wikipedia excludes redirect pages from its esti-
mates of the number of articles). The RW was run for ` = 5 × 104

steps, with the resulting predictions shown in Fig. 7. We find that
Wikipedia contains 13.4 million pages, each of which is connected
to 48 other pages on average. The majority of Wikipedia pages,
60%, are redirect pages, and 4% are disambiguation pages. We esti-
mate the total number of English articles (including disambiguation
pages) to be 5.35 million, and the total number of redirect pages to
be 8.05 million, within the confidence intervals of the values reported
by Wikipedia: 5.5 and 8.0 million, respectively. We find the total
size of English articles in Wikipedia to be 35.8 gigabytes (GB), in
reasonable agreement with the Wikipedia statement that text alone
accounts for 27.6 GB of the storage space of English articles.

Conclusion

In conclusion, we have presented a general Bayesian approach to collecting various network statistics, including the size of the network, using RWs that visit only a small
fraction of all network nodes. Our approach works for both weighted and unweighted undirected networks, and remains accurate in the presence of loops. Our main
assumption, that of the exponentiality of the RT distribution, appears to hold in all the cases we have examined explicitly, and can be relaxed if necessary. Our future work
will focus on extending this methodology to directed and time-dependent networks.
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